

Geosynthetics Product & Application Quick Reference Guide

**TENCATE Mirafi

Our story begins in 1953, when a catastrophic flood struck the coast of Holland. This tiny country, about the size of New Jersey, was hard hit, suffering widespread devastation. Nearly 2,000 people lost their lives. Determined not to allow a recurrence of this type of disaster, the resourceful Dutch began developing a new generation of dike. Working in concert, Dutch engineers and master craftsmen sought out materials that would withstand the most severe and erosive forces of water.

Koninklijke Ten Cate nv, corporate headquarters in Almelo, the Netherlands.

Their search for innovative new products led them to Nicolon B.V. of Holland. Here, they discovered an advanced line of tough industrial textiles which they used to reinforce and retain the dike soils.

Recognizing that the demand for such industrial products extended far beyond the Dutch coast, Nicolon Corporation, a Division of Royal Ten Cate (USA) Inc. was established in Cornelia, Georgia, in 1980.

Meanwhile, in Charlotte, North Carolina, a line of experimental fabrics had been developed in the late 1960s using innovative fabric technology. The fabric, formed of "MIRAcle Flbers", was aptly named, Mirafi® geosynthetics. Mirafi®, Inc. became known as "the company that started an industry."

In 1991, Nicolon Corporation and Mirafi®, Inc. joined forces and is now known as TenCate™ Geosynthetics. TenCate™ continues to devote its research, development, manufacturing and marketing expertise to designing products that provide soil reinforcement, sedimentation control, erosion control, filtration, and drainage.

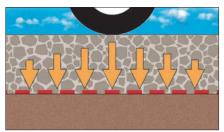
TenCate[™] distributes globally, and is backed with 300 years proven experience. TenCate[™] continues to provide innovative value-added products and knowledge to the construction, agricultural, recreational, and other niche markets with geosynthetic products which exceed our customers' expectations. TenCate[™] is ISO 9001:2000 certified.

TenCate™ Geosynthetics - the global leader in

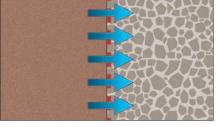
geosynthetics

Mirafi® geosynthetics are a specific, engineered response to a specific problem: how to enable landforms to withstand the most severe and erosive forces of nature.

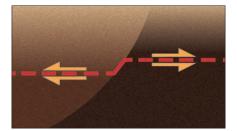
Through engineering and research that span more than 50 years, TenCate™ Geosynthetics has created the most diverse line of geosynthetic fabrics available from any single source on the planet—and has applied them throughout the world to significantly reduce the "hidden" cost of earthen


support systems: their frequency of maintenance and repair over a period of years.

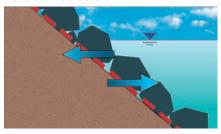
Moreover, geosynthetics are increasingly becoming an economical solution to problems that otherwise could only be solved through drastic, expensive methods.


- Geosynthetics are engineered specifically as a costeffective solution for geotechnical and hydraulic applications.
- Geosynthetics are easy to install.

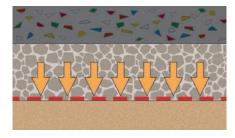
- Because they are composed of highly durable polymers, geosynthetics are effective in permanent civil structures.
- Since they reduce the extraction and depletion of sands and aggregates, geosynthetics are environmentally friendly.


At TenCate™ Geosynthetics, we believe that this proven technology is endowing the age-old relationship between man and nature with a new dimension of compatibility.

Separation: preventing the intermixing of soft foundation soils with granular materials thereby maintaining the structural integrity and drainage capacity of the granular material.



Filtration: allowing fluids to pass while preventing the migration of soil particles.



Reinforcement: maintaining the stability of soil by carrying tensile loads.

Erosion control: preventing the erosion of soil particles due to water flow, surface run-off, or wave and tidal action.

Protection: preventing or reducing the damage to a given surface or layer.

Confinement: preventing or reducing the damage to a given surface or layer.

The range of functions fulfilled by Mirafi® geosynthetics makes them suitable for a wide variety of civil engineering applications, namely transportation engineering, reinforced soil engineering, marine engineering and environmental engineering.

Mirafi® HP-Series

Woven High-Performance Polypropylene Geotextile

PRODUCT DESCRIPTION

Mirafi® HP woven high-performance polypropylene geotextiles are woven geotextiles comprised of high tenacity polypropylene yarns. Mirafi® HP woven high-performance polypropylene geotexvield ultimate tensile tiles strengths up to 20559 lbs/ft (300kN/m) (machine direction) per ASTM D4595. Mirafi® HP woven high-performance polypropylene geotextiles combine the properties of high tensile strength and modulus and high confinement with their ability to act as a filter and separator.

FEATURES AND BENEFITS

- Strength. Higher tensile strength at 2% and 5% than any comparable stabilization product.
- Flow. Uniform openings provide the same filtration and flow characteristics as that of a fine to coarse sand layer.
- Soil Interaction. Excellent soil confinement resulting in greater load distribution.
- Seams. Panels can be sewn together in the factory or field, providing cross-roll direction strength to facilitate installation and providing reinforcement strength.
- Cost. Woven reinforcement geotextiles provide low cost tensile strength for reinforced soil structures.

Roadway Reinforcement

APPLICATIONS

Because of their flexibility and versatility, Mirafi® HP woven high-performance polypropylene geotextiles are used in a variety of applications, including:

- Embankments on soft foundations
- Retaining walls
- Steepened slopes
- Soil stabilization for road and rail construction
- Liner support
- · Voids bridging
- Reinforcement over soft, hazardous pond closures

PROPERTIES	Test Method	Units	HP270	HP370	HP570	HP665	HP770			
Wide Width Tensile Streng	Vide Width Tensile Strength									
Strength @ Ultimate (MD)	ASTM	lbs/ft	2640	3600	4800	4800	7200			
Strength & Oltimate (MD)	D4595	(kN/m)	(38.5)	(52.5)	(70.0)	(70.0)	(105.1)			
Strength @ Ultimate (CD)	ASTM	lbs/ft	2460	2700	4800	6600	5760			
Strength & Offinate (CD)	D4595	(kN/m)	(35.9)	(39.4)	(70.0)	(96.3)	(84.0)			
C: (A 00) C: (A 4D)	ASTM	lbs/ft	480	540	960	n/a	1140			
Strength @ 2% Strain (MD)	D4595	(kN/m)	(7.0)	(7.9)	(14.0)	n/a	(16.6)			
Strength @ 2% Strain (CD)	ASTM	lbs/ft	588	540	1320	n/a	1560			
	D4595	(kN/m)	(8.6)	(7.9)	(19.3)	n/a	(22.8)			
	ASTM	lbs/ft	1212	1500	2400	1200	3600			
Strength @ 5% Strain (MD)	D4595	(kN/m)	(17.7)	(21.9)	(35.0)	(17.5)	(52.5)			
0:	ASTM	lbs/ft	1356	1560	2700	4200	3600			
Strength @ 5% Strain (CD)	D4595	(kN/m)	(19.8)	(22.8)	(39.4)	(61.3)	(52.5)			
Nide Width Factory	ASTM	lbs/ft	1250	1688	3000	3600	3000			
Seam Strength	D4884	(kN/m)	(18.4)	(24.6)	(43.8)	(52.5)	(43.8)			
A	ASTM	US Sieve	30	30	30	40	30			
Apparent Opening Size	D4751	(mm)	(0.60)	(0.60)	(0.60)	(0.43)	(0.60)			
	ASTM	-1	0.70	0.50	0.40	0.00	0.00			
Permittivity	D4491	sec	0.70	0.52	0.40	0.26	0.23			

NOTE: All Mechanical Properties and Hydraulic Properties shown are Minimum Average Roll Values (MARV). MD: Machine Direction, CD: Cross-Machine Direction

Mirafi® BXG-Series

Biaxial Geogrid

PRODUCT DESCRIPTION

Mirafi® BXG biaxial geogrids are woven polyester geogrids for base course reinforcement and subgrade stabilization applications. Mirafi® BXG biaxial geogrids are constructed of high tenacity, high molecular weight polyester to deliver increased passive bearing resistance. Coated with a polymer coating, Mirafi® BXG biaxial geogrids provide optimum interaction in all soil types.

FEATURES AND BENEFITS

 Performance. Mirafi® BXG biaxial geogrids can reduce the required granular base fill material and decrease construction time significantly. Mirafi® BXG biaxial geogrids provides excellent durability and longterm performance and allow reduction of the subbase for unpaved and paved roads.

- Efficiency. Mirafi® BXG biaxial geogrids are produced in 13.1 ft (4 meter) wide rolls allowing for ease of handling and efficient installation.
- Strength. For structures with dynamic short-term loadings, Mirafi® BXG biaxial geogrids offer high strength at low strain. Mirafi® BXG biaxial geogrids are biaxial grids that exhibit high tensile strength in both longitudinal and transverse directions, making them suitable for base course reinforcement and soil stabilization applications.
- Soil Interaction. Designed for maximum bearing capacity and shear resistance. A new combination of grid structure and polymers to create optimum soil-grid interaction.

Roadway Reinforcement

APPLICATIONS

Mirafi® BXG geogrids deliver strength, long-term performance, reliability and quick installation for:

- Base reinforcement for paved roads
- · Construction haul roads
- Foundation Reinforcement
- Permanent unpaved roads
- Working platforms on weak soils
- Parking areas
- Secondary reinforcement for soil retaining structures

PROPERTIES	Test Method	Units	BXG10	BXG11	BXG12
Wide Width Tensile Strength		11 . 15			
Strength @ Ultimate (MD)	ASTM	lbs/ft	850	2500	2500
	D6637	(kN/m)	(12.4)	(36.5)	(36.5)
Strength @ Ultimate (CD)	ASTM	lbs/ft	1300	2500	4500
	D6637	(kN/m)	(19.0)	(36.5)	(65.7)
Strongth @ 10/ Stroin (MAD)	ASTM	lbs/ft	-	375	375
Strength @ 1% Strain (MD)	D6637	(kN/m)	-	(5.5)	(5.5)
Ct	ASTM	lbs/ft	-	375	530
Strength @ 1% Strain (CD)	D6637	(kN/m)	-	(5.5)	(7.7)
C: : : : : : : : : : : : : : : : : : :	ASTM	lbs/ft	280	625	625
Strength @ 2% Strain (MD)	D6637	(kN/m)	(4.1)	(9.1)	(9.1)
Carrer with @ 20/ Carrier (CD)	ASTM	lbs/ft	450	625	840
Strength @ 2% Strain (CD)	D6637	(kN/m)	(6.6)	(9.1)	(12.3)
Tensile Modulus	ASTM	lbs/ft		37500	37500
Modulus @ 1% Strain (MD)	D6637	(kN/m)	-	(547.1)	(547.2)
M 11 @ 40/ Ct : (CD)	ASTM	lbs/ft		37500	53000
Modulus @ 1% Strain (CD)	D6637	(kN/m)	<u>-</u>	(547.1)	(773.4)
		inches	1.0	1.0	1.0
Aperture size (MD & CD)		(mm)	(25.4)	(25.4)	(25.4)

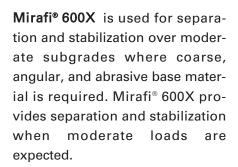
NOTE: All Mechanical Properties and Hydraulic Properties shown are Minimum Average Roll Values (MARV). MD: Machine Direction, CD: Cross Machine Direction

Mirafi[®] X-Series

Woven Polypropylene Geotextile

PRODUCT DESCRIPTION

Mirafi® X-Series woven polypropylene geotexiles are geotextiles comprised of UV stabilized polypropylene slit film. Mirafi® X-Series woven polypropylene geotextiles provide excellent puncture and tear resistant properties in addition to high tensile strengths.


FEATURES AND BENEFITS

- Construction. Woven construction offers excellent resistance to installation abuse.
- Strength. High modulus provide outstanding performance in a wide range of applications.
- Flow. Uniform openings provide excellent filtration and flow characteristics.

APPLICATIONS

Mirafi® 500X applications include separation under parking lots, residential streets, and roadways. Mirafi® 500X is used over good to moderate strength subgrades for separation and confinement of base materials. Mirafi® 500X is also utilized over moderate to

poor subgrades for separation, confinement, and stabilization of base material.

PROPERTIES	Test Method	Units	500X	600X	
Grab Tensile Strength ¹	ASTM	lbs	200	315	
	D4632	(N)	(890)	(1402)	
Grab Tensile Elongation	ASTM	% MD	15	12	
Glab Telisile Eloligation	D4632	% CD	10	12	
Trapezoid Tear Strength ¹	ASTM	lbs	75	113	
rapezoid Tear Strength	D4533	(N)	(334)	(503)	
CBR Puncture Strength ¹	ASTM	lbs	700	900	
CDIT I dilotale Strength	D6241	(N)	(3115)	(4005)	
UV Resistance after 500 hrs¹	ASTM	%	70	70	
OA Mesistance after 200 His.	D4355	Strength	70	70	
Apparent Opening Size ¹	ASTM	US Sieve	40	40	
Apparent Opening Size.	D4751	(mm)	(0.43)	(0.43)	
Permittivity ¹	ASTM	sec	0.05	0.05	
	D4491	300	0.00	0.05	

NOTE: All Mechanical Properties and Hydraulic Properties shown are Minimum Average Roll Values (MARV).

MD: Machine Direction, CD: Cross-Machine Direction

¹ Values apply to both (MD) machine and (CD) cross directions.

Mirafi® MPV Nonwoven Aspahlt Overlay Fabric TruPave® Engineered Paving Mat

MIRAFI® MPV DESCRIPTION

Mirafi® MPV nonwoven asphalt overlay system are needle punched heatset polypropylene nonwoven fabrics with high asphalt absorption and specifically designed for asphalt overlay applications.

FEATURES & BENEFITS

- Conforms with AASHTO M288-96 guidelines for paving fabrics
- Provides a waterproof barrier for subgrade soil protection
- Retards the propagation of an existing crack through the new overlay (reflective cracking)
- Extends the useful life of overlays
- Strengthens entire pave system

APPLICATIONS

- Highways
- Streets

- Bridges
- Runways
- Tennis Courts
- Running Tracks
- Parking Lots
 Basketball Courts
 - Golf Cart Paths

Playgrounds

TRUPAVE® PAVING MAT **DESCRIPTION**

TruPave® is a hybrid fiberglass and polyester paving mat, that when saturated in asphalt cement, forms a monolithic water barrier to limit water intrusion in the pavement. In addition, TruPave® has high tensile strength at low elongation (strain), that is, energy is absorbed and dispersed, mitigating the advent of reflective cracking.

FEATURES & BENEFITS

- Millable and recyclable: Tru-Pave® will breakdown under milling operations due to the unique use of fiberglass and polyester fibers.
- Improves fatigue resistance in flexible pavements.
- TruPave's® unique nonwoven fiber matrix construction provides for a muli-directional, 360° stress relief interlayer. As pavements

exhibit cracking in all directions, TruPave's® tensile strength and low elongation attributes are translated to the pavement section, mitigating further crack development; in all directions.

- Helps to reduce the long-term maintenance and rehabilitation costs associated with pavements.
- Withstands the higher temperatures of today's hot mix asphalt paving mixes.

APPLICATIONS

- Highways
- Urban Streets
- Airports
- Bridge Decks
- Parking Lots
- Shopping Centers

PROPERTIES	Test	Units	MPV	MPV	MPV	MPV	
	Method		400	500	600	700	
Grab Tensile	ASTM	lbs	90	101	120	150	
Strength	D4632	(N)	(401)	(449)	(534)	(668)	
Grab Tensile	ASTM	%	50	50	50	50	
Elongation	D4632	,,,					
Grab Tensile	ASTM	%	40-70	40-70			
Elongation	D4632	7.5					
Asphalt Saturated							
Melting Point	ASTM	°F	325	325	325	325	
wieiting rollit	D276	(°C)	(163)	(163)	(163)	(163)	
Mass Per Unit Area	ASTM	oz/yd²	3.5	4.1	4.6	6.0	
	D5261	(g/m²)	(119)	(140)	(156)	(203)	

PROPERTIES	Test Method	Unit	TruPave	Max
Tensile	ASTM	lbf/2 in	80	
Strength (MD)	D5035			
Tensile Strength (CD)	ASTM D5035	lbf/2 in	70	
Elongation	ASTM	%	<5	
@max load	D5035			
Melting Point	ASTM ED276	F° (C°)		>446 (>230)
Mass/Unit Area	a ASTM	oz/yd²	4.1	4.4
	D5261	(g/m²)	(136.6)	(146.3)

NOTE: All Mechanical Properties and Hydraulic Properties shown are Minimum Average Roll Values (MARV). MD: Machine Direction, CD: Cross-Machine Direction

Drainage & Filtration

Mirafi® N-Series

Nonwoven Polypropylene Geotextile

PRODUCT DESCRIPTION

Mirafi® N-Series nonwoven polypropylene geotextiles are geotextiles comprised of polypropylene staple fibers. Mirafi® N-Series nonwoven polypropylene geotextiles provide excellent physical and hydraulic properties in addition to high tensile strengths.

FEATURES AND BENEFITS

- Construction. Mirafi® N-Series nonwoven polypropylene geotextiles easily conform to the ground or trench surface for trouble-free installation.
- Strength. Mirafi® N-Series nonwoven polypropylene geotextiles withstand severe installation stresses with high puncture and burst resistance.
- Filtration. High permeability properties provide high water flow rates while providing excellent filtration properties.

- Environmental. Mirafi® N-Series nonwoven polypropylene geotextiles are chemically stable in a wide range of aggressive environments.
- Cost effective. Mirafi® N-Series nonwoven polypropylene geotextiles provide economical solutions to many civil engineering applications including a cost-effective alternative to graded-aggregate filters.

APPLICATIONS

Mirafi® N-Series nonwoven polypropylene geotextiles are used in a wide variety of applications including separation, filtration, and protection applications.

 Lightweight nonwovens are predominantly used for subsurface drainage applications along highways, within embankments, under airfields,

and athletic fields. For these drainage structures to be effective, they must have a properly designed protective filter.

 Heavyweight nonwovens are use in critical subsurface drainage systems, soil separation, permanent erosion control, and geomembrane liner protection within landfills. These geotextiles provide the required strength and abrasion resistance to withstand installation and application stresses to create an effective, long-term solution.

PROPERTIES	Test Metho	d Units	140NL	140NC	140N	160N	170N	180N	1100N	1120N	1160N
Grab Tensile Strength											
Strength @ Ultimate	ASTM D4632	lbs (N)	90 (401)	100 (445)	120 (534)	160 (712)	180 (801)	205 (912)	250 (1113)	300 (1335)	380 (1691)
Elongation @ Ultimate	ASTM D4632	%	50	60	50	50	50	50	50	50	50
Trapezoidal Tear Strength	ASTM	lbs	40	45	50	60	75	80	100	115	140
	D4533	(N)	(178)	(200)	(223)	(267)	(334)	(356)	(445)	(512)	(623)
CBR Puncture Strength	ASTM	lbs	250	250	310	410	450	500	700	800	1025
	D6241	(N)	(1113)	(1113)	(1380)	(1825)	(2003)	(2224)	(3115)	(3560)	(4561)
UV Resistance after 500 hi	ASTM D4355	% strength	70	70	70	70	70	70	70	70	70
Apparent Opening Size	ASTM	US Sieve	(60)	(70)	(70)	(70)	(80)	(80)	(100)	(100)	(100)
Apparent Opening Size	D4751	(m)	0.25	0.212	0.212	0.212	0.18	0.18	0.15	0.15	0.15
Dormittivity.	ASTM	-1	2.0	2.0	1 7	1 5	1 /	1.4	0.0	0.0	0.7
Permittivity	D4491	sec	2.0	2.0	1.7	1.5	1.4	1.4	8.0	0.8	
Flow Rato	ASTM	gal/min/ft²	145	140	135	110	105	95	75	65	50
Flow Rate	D4491	(I/min/m ²)	(5907)	(5704)	(5500)	(4481)	(4278)	(3870)	(3056)	(2648)	(2037)

NOTE: All Mechanical Properties and Hydraulic Properties shown are Minimum Average Roll Values (MARV). Values apply to both (MD) machine and (CD) cross directions

Mirafi® FW-Series

Woven Monofilament Polypropylene Geotextile

PRODUCT DESCRIPTION

Mirafi® FW woven monofilament polypropylene geotextiles are woven fabrics of monofilament and multifilament yarn construction which are highly UV stabilized. Mirafi® FW woven monofilament polypropylene geotextiles have high strengths for durability and survivability; consistent, measurable pore sizes; and high percent open area for long-term clogging resistance and high flow rates. Mirafi® FW woven monofilament polypropylene geotextiles are manufactured with highly specialized processes to produce unique physical and hydraulic properties not possible with standard geotextiles, woven or nonwoven.

FEATURES AND BENEFITS

• Filtration. Resists clogging

while maintaining flow rate in high gradient and dynamic flow conditions. Exhibits high percent open area

- Strength. High survivability rating in aggressive installation and loading conditions such as back dumping of large rip rap or underwater placement
- Performance. Resistant to chemicals in aggressive landfill environments. Highly uniform opening size (AOS). Maintains high long-term flow rates.

APPLICATIONS

 Underneath rip rap or concrete revetment systems along inland waterways and coastal shorelines

Drainage & Filtration

- Underneath armor systems; protecting spillways and embankment dams from overtopping flow
- Encapsulating cut-off drains and collection systems surrounding landfills, within dams, and adjacent to roadways and other critical structures
- Encapsulating leachate collection systems under landfills while maintaining long-term clogging resistance
- Encapsulating edge drains for critical structures in problematic soils

PROPERTIES	Test Method	Units	FW300	FW402	FW403	FW404	FW500	FW700
Wide Width Tensile Strength								
Strength @ Ultimate (MD)	ASTM	lbs/ft	2760	2400	3240	3000	2196	2700
	D4595	(kN/m)	(40.3)	(35.0)	(47.3)	(43.8)	(32.1)	(39.4)
Strength @ Ultimate (CD)	ASTM	lbs/ft	2700	1680	2700	2760	3000	1740
	D4595	(kN/m)	(39.4)	(24.5)	(39.4)	(40.3)	(43.8)	(25.4)
Grab Tensile Strength								
Strength @ Ultimate (MD)	ASTM	lbs	400	365	425	400	325	370
	D4632	(N)	(1780)	(1624)	(1891)	(1780)	(1446)	(1647)
Strength @ Ultimate (CD)	ASTM	lbs	335	200	350	315	425	250
	D4632	(N)	(1491)	(890)	(1558)	(1402)	(1892)	(1113)
Elongation @ Ultimate (MD/CD	MT2Δ	%	20/15	24/10	21/21	15/15	15/15	15/15
CBR Puncture Strength	ASTM	lbs	1250	675	1340	1150	1000	950
	D6241	(N)	(5563)	(3004)	(5963)	(5018)	(4450)	(4228)
Apparent Opening Size	ASTM	US Sieve	30	40	40	40	50	70
	D4751	(mm)	(0.60)	(0.43)	(0.43)	(0.43)	(0.30)	(0.212)
Permittivity	ASTM D4491	sec ⁻¹	1.50	2.1	0.96	0.90	0.51	0.28
Flow Rate	ASTM	gal/min/ft²	115	145	70	70	35	18
	D4491	(l/min/m²)	(4685)	(5907)	(2852)	(2852)	(1426)	(733)

NOTE: All Mechanical Properties and Hydraulic Properties shown are Minimum Average Roll Values (MARV). MD: Machine Direction, CD: Cross-Machine Direction

Miragrid® XT

Unaxial Geogrid

PRODUCT DESCRIPTION

Miragrid® XT unaxial geogrids are high strength, high tenacity, high molecular weight polyester geogrids in a full range of tensile strengths to meet the most demanding applications of soil reinforcement. Miragrid® XT unaxial geogrids are woven and then coated with a polymer coating to provide dimensional stability.

FEATURES AND BENEFITS

- No recoiling. Remains in place after being installed; does not roll back.
- Flexible and tough. Delivers immediate soil geogrid stress transfer ensuring minimal movement of soil structure.
- Lightweight. At least 33% lighter than most rigid geogrids.
- Cost effective. Creep resistant polyester fibers provide a higher allowable tensile

- strength, minimizing the required number of geogrid layers.
- High Long Term Design Strengths (LTDS). Miragrid® XT unaxial geogrids long term design strengths are backed up by more than 70,000 hours of tension creep testing performed at an outside, independent test laboratory so you can be assured of credible, dependable long term design strengths.
- Easy handling. No sharp edges which may injure workers.
- Wide rolls. Rolls are wider than most rigid geogrids, significantly reducing placement time thus lowering cost.
- Custom fabrication of rolls: Fabricated to the specific requirements of the project.

Retaining Walls & Slopes

APPLICATIONS

Applications where long term design strength is necessary for the stability of the structure are ideal applications where Miragrid® XT unaxial geogrids can be used. Miragrid® XT unaxial geogrids are used in a wide variety of soil reinforcement applications including:

- Reinforced soil walls
- Segmental retaining walls
- Steep reinforced slopes
- Reinforcement in landfill applica tions
- Voids bridging
- Veneer stability

PROPERTIES	Test Method	Units	2XT	3XT	5XT	7XT	8XT	10XT	20XT	22XT	24XT
Wide Width Tensile											
Strength @ Ultimate (ME) ASTM	lbs/ft	2000	3500	4700	5900	7400	9500	13705	20559	27415
Strength & Ottimate (ML	D6637	(kN/m)	(29.2)	(51.1)	(68.6)	(86.1)	(108.0)	(139)	(200)	(300)	(400)
Creep Reduced	ASTM	lbs/ft	1266	2215	2975	3734	4684	6013	8674	13012	17351
Strength (MD)	D5262	(kN/m)	(18.5)	(32.3)	(43.4)	(54.5)	(68.3)	(88)	(127)	(190)	(253)
Long Term Design	GR-GG4	lbs/ft	1096	1918	2575	3233	4055	5206	7510	11266	15023
Strength (MD)	(sand, silt, clay)	(kN/m)	(16.0)	(28)	(37.6)	(47.2)	(59.2)	(76)	(110)	(164)	(219)
Grid Aperature	_	in	0.875	0.875	1.2	1.3	1.3	1.3	1.5	1.4	1.4
Size (MD)		(mm)	(22.2)	(22.2)	(30.5)	(33.0)	(33.0)	(33.3)	(38.1)	(35.6)	(35.6)
Grid Aperature		in	1.0	1.0	1.0	0.9	0.9	0.8	0.6	0.6	0.5
Size (CD)		(mm)	(25.4)	(25.4)	(25.4)	(22.9)	(21.8)	(20.8)	(15.2)	(15.2)	(12.7)

NOTE: All Mechanical Properties and Hydraulic Properties shown are Minimum Average Roll Values (MARV).

MD: Machine Direction, CD: Cross-Machine Direction

Embankments

Mirafi® PET-Series

Woven High-Strength Polyester Geotextiles

PRODUCT DESCRIPTION

Mirafi® PET woven high-strength polyester geotextiles are woven geotextiles comprised of high tenacity, high molecular weight polyester yarns. Mirafi® PET woven high-strength polyester geotextiles yield ultimate tensile strengths up to 68,500 lbs/ft (1000 kN/m), machine direction, per ASTM D4595 and Long Term Design Strengths up to 35,600 lbs/ft (520 kN/m) per GRI-GT7. The Mirafi® PET woven highstrength polyester geotextiles combine the properties of high tensile strength with excellent creep resistance to provide superior long term design strengths.

FEATURES AND BENEFITS

 Creep Resistance. Polyester fibers provide excellent creep resistance which results in

- higher long term design strengths per GRI-GT7 requirements.
- Strength. Higher tensile strength than any comparable product.
- Soil Interaction. Excellent soil confinement resulting in greater load distribution.
- **Seams.** Panels can be sewn together in the factory or field to facilitate installation.
- Cost. Woven reinforcement geotextiles provide low cost strengths for reinforced soil structures.

APPLICATIONS

For any application where long term design of earth reinforcement structures are involved, Mirafi® PET woven high-strength polyester geotextiles is the logical choice. Because of their flexibility

and versatility, woven geotextiles are used in a variety of soil reinforcement applications, including:

- Embankments on soft foundations
- · Retaining walls
- Steepened slopes
- Liner support
- · Voids bridging
- Reinforcement over soft, hardous pond closures.

PROPERTIES	Test Method	Units	PET70/70	PET100	PET150	PET200	PET300	PET 400/50	PET 600/100
Wide Width Tensile Strength									
Strength @ Ultimate (MD)	ASTM	lbs/ft	4800	7200	10283	13800	20580	27417	41121
Strength @ 5% Strain (MD)	D4595 ASTM	(kN/m) lbs/ft	(70.0) 1080	(105.1) 2400	(150)	(201.4) 6000	(300.4)	(400) 9594	(600) 14400
- Changar C 070 Chair (WZ)	D4595 ASTM	(kN/m) lbs/ft	(15.8)	(35.0)	9000	(87.6) 12000	(122.6) 16800	(140) n/a	(210) n/a
Strength @ 10% Strain (MD)	D4595	(kN/m)	(49.0)	(84.0)	(131.3)	(175.1)	(245.1)	n/a	n/a
Creep Reduced Strength (MD)	ASTM D5262	lbs/ft (kN/m)	2880 (42.0)	4320 (63.0)	5760 (84.0)	8280 (120.8)	12348 (180.2)	16447 (240)	24673 (360)
Long Term Design Strength (MD)	GR-GT7 (sand, silt, clay)	lbs/ft (kN/m)	2280 (33.2)	3420 (49.9)	6170 (90.0)	6545 (95.5)	10208 (148.9)	13590 (198.3)	20391 (297.5)
Apparent Opening Size	ASTM D4751	US Sieve (mm)	40 (0.43)	20 (0.85)	20 (0.85)	30 (0.60)	20 (0.85)	n/a n/a	n/a n/a
Permittivity	ASTM D4491	sec -1	0.10	0.32	0.20	0.32	0.10	n/a	n/a

NOTE: All Mechanical Properties and Hydraulic Properties shown are Minimum Average Roll Values (MARV). MD: Machine Direction, CD: Cross-Machine Direction

	Mirafi [®] HP-Series	Mirafi® BXG-Series	Mirafi° X-Series	Mirafi [®] N-Series	Mirafi° FW-Series	Miragrid [®] XT	Mirafi® PET-Series
Transportation							
Site Drainage				✓	✓		
Separation/ Stabilization	✓		✓	✓	✓		✓
Roadway Reinforcement	✓	✓					✓
Sediment Control				✓	1		
Paving				✓			
Marine							
Armored Revetment Systems	✓			✓	✓		✓
Reinforced Soil							
Segmental Retaining Walls						✓	✓
Temporary Retaining Walls	✓	✓				✓	✓
Steepened Slopes	✓	✓				✓	✓
Embankments on Soft Soils	✓	✓				✓	✓
Environmental							
Waste Lagoon Capping	✓						✓
Sludge Dewatering	✓						✓
Voids Bridging						✓	✓
Veneer Reinforcement						✓	✓
Geomembrane Protection				1			

TenCate[™] assumes no liability for the accuracy or completeness of this information or for the ultimate use by the purchaser. TenCate[™] disclaims any and all express, implied, or statutory standards, warranties or guarantees, including without limitation any implied warranty as to merchantability or fitness for a particular purpose or arising from a course of dealing or usage of trade as to any equipment, materials, or information furnished herewith. This document should not be construed as engineering advice.

Mirafi® is a registered trademark of Nicolon Corporation

© 2011 TenCate Geosynthetics North America

BRO.PG1111

